Package 'inti'

Title: Tools and Statistical Procedures in Plant Science
Description: The 'inti' package is part of the 'inkaverse' project for developing different procedures and tools used in plant science and experimental designs. The mean aim of the package is to support researchers during the planning of experiments and data collection (tarpuy()), data analysis and graphics (yupana()) , and technical writing. Learn more about the 'inkaverse' project at <https://inkaverse.com/>.
Authors: Flavio Lozano-Isla [aut, cre] , QuipoLab [ctb], Inkaverse [cph]
Maintainer: Flavio Lozano-Isla <[email protected]>
License: GPL-3 | file LICENSE
Version: 0.6.6
Built: 2024-12-27 19:49:44 UTC
Source: https://github.com/flavjack/inti

Help Index


Colourise text for display in the terminal

Description

If R is not currently running in a system that supports terminal colours the text will be returned unchanged.

Usage

colortext(text, fg = "red", bg = NULL)

Arguments

text

character vector

fg

foreground colour, defaults to white

bg

background colour, defaults to transparent

Details

Allowed colours are: black, blue, brown, cyan, dark gray, green, light blue, light cyan, light gray, light green, light purple, light red, purple, red, white, yellow

Author(s)

testthat package

Examples

print(colortext("Red", "red"))
cat(colortext("Red", "red"), "\n")
cat(colortext("White on red", "white", "red"), "\n")

Experimental design without replications

Description

Function to deploy field-book experiment without replications

Usage

design_noreps(
  factors,
  type = "sorted",
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = NULL,
  fbname = "inkaverse",
  qrcode = "{fbname}{plots}{factors}"
)

Arguments

factors

Lists with names and factor vector [list].

type

Randomization in the list [string: sorted, unsorted]

zigzag

Experiment layout in zigzag [logic: FALSE].

nrows

Experimental design dimension by rows [numeric: value]

serie

Number to start the plot id [numeric: 1000].

seed

Replicability from randomization [numeric: NULL].

fbname

Bar code prefix for data collection [string: "inkaverse"].

qrcode

[string: "{fbname}{plots}{factors}"] String to concatenate the qr code.

Value

A list with the field-book design and parameters

Examples

## Not run: 

library(inti)

factores <- list("geno" = c(1:99))

fb <- design_noreps(factors = factores
                     , type = "sorted"
                     , zigzag = F
                     , nrows = 10
                     )
                     
dsg <- fb$fieldbook

fb %>%   
  tarpuy_plotdesign(fill = "plots") 

fb$parameters


## End(Not run)

Experimental design in CRD and RCBD

Description

Function to deploy field-book experiment for CRD and RCBD

Usage

design_repblock(
  nfactors = 1,
  factors,
  type = "crd",
  rep = 3,
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = NULL,
  fbname = "inkaverse",
  qrcode = "{fbname}{plots}{factors}"
)

Arguments

nfactors

Number of factor in the experiment [numeric: 1].

factors

Lists with names and factor vector [list].

type

Type of experimental arrange [string: "crd" "rcbd" "lsd"]

rep

Number of replications in the experiment [numeric: 3].

zigzag

Experiment layout in zigzag [logic: F].

nrows

Experimental design dimension by rows [numeric: value]

serie

Number to start the plot id [numeric: 100].

seed

Replicability from randomization [numeric: NULL].

fbname

Bar code prefix for data collection [string: "inkaverse"].

qrcode

[string: "{fbname}{plots}{factors}"] String to concatenate the qr code.

Value

A list with the field-book design and parameters

Examples

## Not run: 

library(inti)

factores <- list("geno" = c("A", "B", "C", "D", "D", 1, NA, NA, NULL, "NA")
                 , "salt stress" = c(0, 50, 200, 200, "T0", NA, NULL, "NULL")
                 , time = c(30, 60, 90)
                 )

fb <-design_repblock(nfactors = 2
                     , factors = factores
                     , type = "rcbd"
                     , rep = 5
                     , zigzag = T
                     , seed = 0
                     , nrows = 20
                     , qrcode = "{fbname}{plots}{factors}"
                     )
                     
dsg <- fb$fieldbook

fb %>%   
  tarpuy_plotdesign(fill = "plots") 

fb$parameters


## End(Not run)

Figure to Quarto format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

figure2qmd(text, path = ".", opts = NA)

Arguments

text

Markdown text with figure information [string]

path

Image path for figures [path: "." (base directory)]

opts

chunk options in brackets [string: NA]

Details

Quarto option can be included in the title using "{{}}" separated by commas

Value

string mutated


Figure to Rmarkdown format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

figure2rmd(text, path = ".", opts = NA)

Arguments

text

String with the table information

path

Path of the image for the figure

opts

chunk options in brackets.

Value

Mutated string


Footnotes in tables

Description

Include tables footnotes and symbols for kables in pandoc format

Usage

footnotes(table, notes = NULL, label = "Note:", notation = "alphabet")

Arguments

table

Kable output in pandoc format.

notes

Footnotes for the table.

label

Label for start the footnote.

notation

Notation for the footnotes (default = "alphabet"). See details.

Details

You should use the pandoc format kable(format = "pipe"). You can add the footnote symbol using {hypen} in your table. notation could be use: "alphabet", "number", "symbol", "none".

Value

Table with footnotes for word and html documents


Google docs to Rmarkdown

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

gdoc2qmd(file, export = NA, format = "qmd", type = "asis")

Arguments

file

Zip file path from Articul8 exported in md format [path]

export

Path to export the files [path: NA (file directory)]

format

Output format [string: "qmd" "rmd"]

type

output file type [strig: "asis" "list", "listfull", "full"]

Details

Document rendering until certain point: "#| end" Include for next page: "#| newpage" You can include the cover page params using "#|" in a Google docs table

Value

path


Broad-sense heritability in plant breeding

Description

Heritability in plant breeding on a genotype difference basis

Usage

H2cal(
  data,
  trait,
  gen.name,
  rep.n,
  env.n = 1,
  year.n = 1,
  env.name = NULL,
  year.name = NULL,
  fixed.model,
  random.model,
  summary = FALSE,
  emmeans = FALSE,
  weights = NULL,
  plot_diag = FALSE,
  outliers.rm = FALSE,
  trial = NULL
)

Arguments

data

Experimental design data frame with the factors and traits.

trait

Name of the trait.

gen.name

Name of the genotypes.

rep.n

Number of replications in the experiment.

env.n

Number of environments (default = 1). See details.

year.n

Number of years (default = 1). See details.

env.name

Name of the environments (default = NULL). See details.

year.name

Name of the years (default = NULL). See details.

fixed.model

The fixed effects in the model (BLUEs). See examples.

random.model

The random effects in the model (BLUPs). See examples.

summary

Print summary from random model (default = FALSE).

emmeans

Use emmeans for calculate the BLUEs (default = FALSE).

weights

an optional vector of ‘prior weights’ to be used in the fitting process (default = NULL).

plot_diag

Show diagnostic plots for fixed and random effects (default = FALSE). Options: "base", "ggplot". .

outliers.rm

Remove outliers (default = FALSE). See references.

trial

Column with the name of the trial in the results (default = NULL).

Details

The function allows to made the calculation for individual or multi-environmental trials (MET) using fixed and random model.

1. The variance components based in the random model and the population summary information based in the fixed model (BLUEs).

2. Heritability under three approaches: Standard (ANOVA), Cullis (BLUPs) and Piepho (BLUEs).

3. Best Linear Unbiased Estimators (BLUEs), fixed effect.

4. Best Linear Unbiased Predictors (BLUPs), random effect.

5. Table with the outliers removed for each model.

For individual experiments is necessary provide the trait, gen.name, rep.n.

For MET experiments you should env.n and env.name and/or year.n and year.name according your experiment.

The BLUEs calculation based in the pairwise comparison could be time consuming with the increase of the number of the genotypes. You can specify emmeans = FALSE and the calculate of the BLUEs will be faster.

If emmeans = FALSE you should change 1 by 0 in the fixed model for exclude the intersect in the analysis and get all the genotypes BLUEs.

For more information review the references.

Value

list

Author(s)

Maria Belen Kistner

Flavio Lozano Isla

References

Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

Buntaran, H., Piepho, H., Schmidt, P., Ryden, J., Halling, M., and Forkman, J. (2020). Cross validation of stagewise mixed model analysis of Swedish variety trials with winter wheat and spring barley. Crop Science, 60(5).

Schmidt, P., J. Hartung, J. Bennewitz, and H.P. Piepho. 2019. Heritability in Plant Breeding on a Genotype Difference Basis. Genetics 212(4).

Schmidt, P., J. Hartung, J. Rath, and H.P. Piepho. 2019. Estimating Broad Sense Heritability with Unbalanced Data from Agricultural Cultivar Trials. Crop Science 59(2).

Tanaka, E., and Hui, F. K. C. (2019). Symbolic Formulae for Linear Mixed Models. In H. Nguyen (Ed.), Statistics and Data Science. Springer.

Zystro, J., Colley, M., and Dawson, J. (2018). Alternative Experimental Designs for Plant Breeding. In Plant Breeding Reviews. John Wiley and Sons, Ltd.

Examples

library(inti)

dt <- potato

hr <- H2cal(data = dt
            , trait = "stemdw"
            , gen.name = "geno"
            , rep.n = 5
            , fixed.model = "0 + (1|bloque) + geno"
            , random.model = "1 + (1|bloque) + (1|geno)"
            , emmeans = TRUE
            , plot_diag = FALSE
            , outliers.rm = TRUE
            )

 hr$tabsmr
 hr$blues
 hr$blups
 hr$outliers

Include PDF in markdown documents

Description

Insert PDF files in markdown documents

Usage

include_pdf(file, width = "100%", height = "600")

Arguments

file

file path from pdf file.

width

width preview file.

height

height preview file.

Value

html code for markdown


Table with footnotes

Description

Include tables with title and footnotes for word and html documents

Usage

include_table(table, caption = NA, notes = NA, label = NA, notation = "none")

Arguments

table

Data frame.

caption

Table caption (default = NULL). See details.

notes

Footnotes for the table (default = NA). See details.

label

Label for start the footnote (default = NA).

notation

Notation for the symbols and footnotes (default = "none") Others: "alphabet", "number", "symbol".

Value

Table with caption and footnotes

Examples

library(inti)

table <- data.frame(
x = rep_len(1, 5)
, y = rep_len(3, 5)
, z = rep_len("c", 5)
)

table %>% inti::include_table(
  caption = "Title caption b) line 0
  a) line 1
  b) line 2"
  , notes = "Footnote"
  , label = "Where:"
  )

Journal Club Tombola

Description

Function for arrange journal club schedule

Usage

jc_tombola(
  data,
  members,
  papers = 1,
  group = NA,
  gr_lvl = NA,
  status = NA,
  st_lvl = "active",
  frq = 7,
  date = NA,
  seed = NA
)

Arguments

data

Data frame withe members and their information.

members

Columns with the members names.

papers

Number of paper by meeting

group

Column for arrange the group.

gr_lvl

Levels in the groups for the arrange. See details.

status

Column with the status of the members.

st_lvl

Level to confirm the assistance in the JC. See details.

frq

Number of the day for each session.

date

Date when start the first session of JC.

seed

Number for replicate the results (default = date).

Details

The function could consider n levels for gr_lvl. In the case of more levels using "both" or "all" will be the combination. The suggested levels for st_lvl are: active or spectator. Only the "active" members will enter in the schedule.

Value

data frame with the schedule for the JC


Mean comparison test

Description

Function to compare treatment from lm or aov using data frames

Usage

mean_comparison(
  data,
  response,
  model_factors,
  comparison,
  test_comp = "SNK",
  sig_level = 0.05
)

Arguments

data

Fieldbook data.

response

Model used for the experimental design.

model_factors

Factor in the model.

comparison

Significance level for the analysis (default = 0.05).

test_comp

Comparison test (default = "SNK"). Others: "TUKEY", "DUNCAN".

sig_level

Significance level for the analysis (default = 0.05).

Value

list

Examples

## Not run: 

library(inti)
library(gsheet)

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/"
              , "edit#gid=172957346")
# browseURL(url)

fb <- gsheet2tbl(url)

mc <- mean_comparison(data = fb
                      , response = "spad_29"
                      , model_factors = "bloque* geno*treat"
                      , comparison = c("geno", "treat")
                      , test_comp = "SNK"
                      )
mc$comparison
mc$stat


## End(Not run)

Swedish cultivar trial data

Description

The datasets were obtained from official Swedish cultivar tests. Dry matter yield was analyzed. All trials were laid out as alpha-designs with two replicates. Within each replicate, there were five to seven incomplete blocks.

Usage

met

Format

A data frame with 1069 rows and 8 variables:

zone

Sweden is divided into three different agricultural zones: South, Middle, and North

location

Locations: 18 location in the Zones

rep

Replications (4): number of replication in the experiment

alpha

Incomplete blocks (8) in the alpha-designs

cultivar

Cultivars (30): genotypes evaluated

yield

Yield in kg/ha

year

Year (1): 2016

env

enviroment (18): combination zone + location + year

Source

doi:10.1002/csc2.20177


Transform fieldbooks based in a dictionary

Description

Transform entire fieldbook according to data a dictionary

Usage

metamorphosis(fieldbook, dictionary, from, to, index, colnames)

Arguments

fieldbook

Data frame with the original information.

dictionary

Data frame with new names and categories. See details.

from

Column of the dictionary with the original names.

to

Column of the dictionary with the new names.

index

Column of the dictionary with the type and level of the variables.

colnames

Character vector with the name of the columns.

Details

The function require at least three columns.

1. Original names (from).

2. New names (to).

3. Variable type (index).

Value

List with two objects. 1. New data frame. 2. Dictionary.


Remove outliers

Description

Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).

Usage

outliers_remove(data, trait, model, drop_na = TRUE)

Arguments

data

Experimental design data frame with the factors and traits.

trait

Name of the trait.

model

The fixed or random effects in the model.

drop_na

drop NA values from the data.frame

Details

Function to remove outliers in MET experiments

Value

list. 1. Table with date without outliers. 2. The outliers in the dataset.

References

Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

Examples

library(inti)

rmout <- potato %>% outliers_remove(
  data = .
  , trait ="stemdw"
  , model = "0 + treat*geno + (1|bloque)"
  , drop_na = FALSE
  )

rmout

Diagnostic plots

Description

Function to plot the diagnostic of models

Usage

plot_diag(model, title = NA)

Arguments

model

Statistical model

title

Plot title

Value

plots

Examples

## Not run: 

library(inti)

lm <- aov(stemdw ~ bloque + geno*treat, data = potato)

# lm <- potato %>% lme4::lmer(stemdw ~ (1|bloque) + geno*treat, data = .)
 
plot(lm, which = 1)
plot_diag(lm)[3]

plot(lm, which = 2)
plot_diag(lm)[2]

plot(lm, which = 3)
plot_diag(lm)[4]

plot(lm, which = 4)
plot_diag(lm)[1]


## End(Not run)

Diagnostic plots

Description

Function to plot the diagnostic of models

Usage

plot_diagnostic(data, formula, title = NA)

Arguments

data

Experimental design data frame with the factors and traits.

formula

Mixed model formula

title

Plot title

Value

plots

Examples

## Not run: 

library(inti)

plot_diagnostic(data = potato
                , formula = stemdw ~ (1|bloque) + geno*treat)


## End(Not run)

Plot raw data

Description

Function use the raw data for made a boxplot graphic

Usage

plot_raw(
  data,
  type = "boxplot",
  x,
  y,
  group = NULL,
  xlab = NULL,
  ylab = NULL,
  glab = NULL,
  ylimits = NULL,
  xlimits = NULL,
  xrotation = NULL,
  legend = "top",
  xtext = NULL,
  gtext = NULL,
  color = TRUE,
  linetype = 1,
  opt = NULL
)

Arguments

data

raw data

type

Type of graphic. "boxplot" or "scatterplot"

x

Axis x variable

y

Axis y variable

group

Group variable

xlab

Title for the axis x

ylab

Title for the axis y

glab

Title for the legend

ylimits

Limits and break of the y axis c(initial, end, brakes)

xlimits

For scatter plot. Limits and break of the x axis c(initial, end, brakes)

xrotation

Rotation in x axis c(angle, h, v)

legend

the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)

xtext

Text labels in x axis using a vector

gtext

Text labels in groups using a vector

color

Colored figure (TRUE), black & white (FALSE) or color vector

linetype

Line type for regression. Default = 0

opt

Add new layers to the plot

Details

You could add additional layer to the plot using "+" with ggplot2 options

Value

plot

Examples

## Not run: 

library(inti)

fb <- potato

fb %>%
  plot_raw(type = "box"
           , x = "geno"
           , y = "twue"
           , group = NULL
           , ylab = NULL
           , xlab = NULL
           , glab = ""
           ) 
           
fb %>%
  plot_raw(type = "sca"
           , x = "geno"
           , y = "twue"
           , group = "treat"
           , color = c("red", "blue")
           ) 
           

## End(Not run)

Plot summary data

Description

Graph summary data into bar o line plot

Usage

plot_smr(
  data,
  type = NULL,
  x = NULL,
  y = NULL,
  group = NULL,
  xlab = NULL,
  ylab = NULL,
  glab = NULL,
  ylimits = NULL,
  xrotation = c(0, 0.5, 0.5),
  xtext = NULL,
  gtext = NULL,
  legend = "top",
  sig = NULL,
  sigsize = 3,
  error = NULL,
  color = TRUE,
  opt = NULL
)

Arguments

data

Output from summary data

type

Type of graphic. "bar" or "line"

x

Axis x variable

y

Axis y variable

group

Group variable

xlab

Title for the axis x

ylab

Title for the axis y

glab

Title for the legend

ylimits

limits of the y axis c(initial, end, brakes)

xrotation

Rotation in x axis c(angle, h, v)

xtext

Text labels in x axis using a vector

gtext

Text labels in group using a vector

legend

the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)

sig

Column with the significance

sigsize

Font size in significance letters

error

Show the error bar ("ste" or "std")

color

colored figure (TRUE), black & white (FALSE) or color vector

opt

Add news layer to the plot

Details

If the table is a out put of mean_comparison(graph_opts = TRUE) function. Its contain all the parameter for the plot.

You could add additional layer to the plot using "+" with ggplot2 options

Value

plot

Examples

## Not run: 

library(inti)

fb <- potato#' 

yrs <- yupana_analysis(data = fb
                       , response = "hi"
                       , model_factors = "geno*treat"
                       , comparison = c("geno", "treat")
                       )

yrs$meancomp %>% 
  plot_smr(type = "line"
           , x = "geno"
           , y = "hi"
           , xlab = ""
           , group = "treat"
           , glab = "Tratamientos"
           , ylimits = c(0, 1, 0.2)
           , color = c("red", "black")
           , gtext = c("Irrigado", "Sequia")
           )
           

## End(Not run)

Water use efficiency in 15 potato genotypes

Description

Experiment to evaluate the physiological response from 15 potatos genotypes under water deficit condition. The experiment had a randomized complete block design with five replications. The stress started at 30 day after planting.

Usage

potato

Format

A data frame with 150 rows and 17 variables:

treat

Water deficit treatments: sequia, irrigado

geno

15 potato genotypes

bloque

blocks for the experimentl design

spad_29

Relative chlorophyll content (SPAD) at 29 day after planting

spad_83

Relative chlorophyll content (SPAD) at 84 day after planting

rwc_84

Relative water content (percentage) at 84 day after planting

op_84

Osmotic potential (Mpa) at 84 day after planting

leafdw

leaf dry weight (g)

stemdw

stem dry weight (g)

rootdw

root dry weight (g)

tubdw

tuber dry weight (g)

biomdw

total biomass dry weight (g)

hi

harvest index

ttrans

total transpiration (l)

wue

water use effiency (g/l)

twue

tuber water use effiency (g/l)

lfa

leaf area (cm2)


Remove outliers using mixed models

Description

Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).

Usage

remove_outliers(data, formula, drop_na = FALSE, plot_diag = FALSE)

Arguments

data

Experimental design data frame with the factors and traits.

formula

mixed model formula.

drop_na

drop NA values from the data.frame

plot_diag

Diagnostic plot based in the raw and clean data

Details

Function to remove outliers in MET experiments

Value

list. 1. Table with date without outliers. 2. The outliers in the dataset.

References

Bernal Vasquez, Angela Maria, et al. “Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML.” Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

Examples

library(inti)

rmout <- potato %>%
  remove_outliers(data = .
  , formula = stemdw ~ 0 + (1|bloque) + treat*geno
  , plot_diag = FALSE
  , drop_na = FALSE
  )

rmout

Split folder

Description

Function to split folder by size or number of elements

Usage

split_folder(
  folder,
  export,
  units = "megas",
  size = 500,
  zip = TRUE,
  remove = FALSE
)

Arguments

folder

Path of folder to split (path).

export

Path to export the split folders (path).

units

Units to split folder (string: "megas", "number").

size

Folder size by the units selected (numeric).

zip

Zip split folders (logical).

remove

Remove the split folder after zip (logical).

Value

zip files

Examples

## Not run: 

split_folder("pictures/QUINOA 2018-2019 SC SEEDS EDWIN - CAMACANI/"
   , "pictures/split_num", remove = T, size = 400, units = "number")


## End(Not run)

Table to Quarto format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

table2qmd(text, type = "asis")

Arguments

text

Markdown text with table information (string)

type

output file type [strig: "asis" "list", "listfull", "full"]

Value

string mutated


Table to Rmarkdown format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

table2rmd(text, opts = NA)

Arguments

text

String with the table information

opts

chunk options in brackets.

Value

Mutated string


Interactive fieldbook designs

Description

Invoke RStudio addin to create fieldbook designs

Usage

tarpuy(dependencies = FALSE)

Arguments

dependencies

Install package dependencies for run the app

Details

Tarpuy allow to create experimental designs under an interactive app.

Value

Shiny app

Examples

if(interactive()){

 inti::tarpuy()

}

Fieldbook experimental designs

Description

Function to deploy experimental designs

Usage

tarpuy_design(
  data,
  nfactors = 1,
  type = "crd",
  rep = 2,
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = NULL,
  fbname = NA,
  qrcode = "{fbname}{plots}{factors}"
)

Arguments

data

Experimental design data frame with the factors and level. See examples.

nfactors

Number of factor in the experiment(default = 1). See details.

type

Type of experimental arrange (default = "crd"). See details.

rep

Number of replications in the experiment (default = 3).

zigzag

Experiment layout in zigzag [logic: FALSE].

nrows

Experimental design dimension by rows [numeric: value]

serie

Number to start the plot id [numeric: 100].

seed

Replicability of draw results (default = 0) always random. See details.

fbname

Barcode prefix for data collection.

qrcode

[string: "{fbname}{plots}{factors}"] String to concatenate the qr code.

Details

The function allows to include the arguments in the sheet that have the information of the design. You should include 2 columns in the sheet: {arguments} and {values}. See examples. The information will be extracted automatically and deploy the design. nfactors = 1: crd, rcbd, lsd, lattice. nfactors = 2 (factorial): split-crd, split-rcbd split-lsd nfactors >= 2 (factorial): crd, rcbd, lsd.

Value

A list with the fieldbook design

Examples

## Not run: 

library(inti)
library(gsheet)

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1479851579#gid=1479851579")
# browseURL(url)

fb <- gsheet2tbl(url) 

dsg <- fb %>% tarpuy_design() 

dsg %>% 
  tarpuy_plotdesign()


## End(Not run)

Fieldbook plan information

Description

Information for build a plan for an experiment (PLEX)

Usage

tarpuy_plex(
  data = NULL,
  title = NULL,
  objectives = NULL,
  hypothesis = NULL,
  rationale = NULL,
  references = NULL,
  plan = NULL,
  institutions = NULL,
  researchers = NULL,
  manager = NULL,
  location = NULL,
  altitude = NULL,
  georeferencing = NULL,
  environment = NULL,
  start = NA,
  end = NA,
  about = NULL,
  fieldbook = NULL,
  project = NULL,
  repository = NULL,
  manuscript = NULL,
  album = NULL,
  nfactor = 2,
  design = "rcbd",
  rep = 3,
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = 0,
  qrcode = "{fbname}{plots}{factors}"
)

Arguments

data

Data with the fieldbook information.

title

Project title.

objectives

The objectives of the project.

hypothesis

What are the expected results.

rationale

Based in which evidence is planned the experiment.

references

References.

plan

General description of the project (M & M).

institutions

Institutions involved in the project.

researchers

Persons involved in the project.

manager

Persons responsible of the collection of the data.

location

Location of the project.

altitude

Altitude of the experiment (m.a.s.l).

georeferencing

Georeferencing information.

environment

Environment of the experiment (greenhouse, lab, etc).

start

The date of the start of the experiments.

end

The date of the end of the experiments.

about

Short description of the project.

fieldbook

Name or ID for the fieldbook/project.

project

link for project.

repository

link to the repository.

manuscript

link for manuscript.

album

link with the photos of the project.

nfactor

Number of factors for the design.

design

Type of design.

rep

Number of replication.

zigzag

Experiment layout in zigzag [logic: F]

nrows

Experimental design dimension by rows [numeric: value]

serie

Number of digits in the plots.

seed

Seed for the randomization.

qrcode

[string: "{fbname}{plots}{factors}"] String to concatenate the qr code.

Details

Provide the information available.

Value

data frame or list of arguments:

  1. info

  2. variables

  3. design

  4. logbook

  5. timetable

  6. budget


Fieldbook plot experimental designs

Description

Plot fieldbook sketch designs based in experimental design

Usage

tarpuy_plotdesign(
  data,
  factor = NA,
  fill = "plots",
  xlab = NULL,
  ylab = NULL,
  glab = NULL
)

Arguments

data

Experimental design data frame with the factors and level. See examples.

factor

Vector with the name of the columns with the factors.

fill

Value for fill the experimental units (default = "plots").

xlab

Title for x axis.

ylab

Title for y axis.

glab

Title for group axis.

Details

The function allows to plot the experimental design according the field experiment design.

Value

plot

Examples

## Not run: 

library(inti)
library(gsheet)

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "1_BVzChX_-lzXhB7HAm6FeSrwq9iKfZ39_Sl8NFC6k7U/edit#gid=1834109539")
# browseURL(url)

fb <- gsheet2tbl(url) 

dsg <- fb %>% tarpuy_design() 

dsg

dsg %>% str()

dsg %>% 
  tarpuy_plotdesign()


## End(Not run)

Field book traits

Description

Function to export field book and traits for be used in field book app.

Usage

tarpuy_traits(fieldbook = NULL, last_factor = NULL, traits = NULL)

Arguments

fieldbook

Experiment field book [dataframe].

last_factor

Last factor in the field book [string: colnames]

traits

Traits information [dataframe or list].

Details

For the traits parameters you can used shown in the Field Book app

Value

list

Examples

library(inti)

fieldbook <- inti::potato

traits <- list(
  list(variable = "altura de planta"
       , trait = "altp"
       , format = "numeric"
       , when = "30, 40, 50"
       , samples = 3
       , units = "cm"
       , details = NA
       , minimum = 0
       , maximum = 100
       )
  , list(variable = "severidad"
         , trait = "svr"
         , format = "scategorical"
         , when = "30, 40, 50"
         , samples = 1
         , units = "scale"
         , details = NA
         , categories = "1, 3, 5, 7, 9"
  )
  ,  list(variable = "foto"
          , trait = "foto"
          , format = "photo"
          , when = "hrv, pshrv"
          , samples = 1
          , units = "image"
          , details = NA
  )
  ,  list(variable = "germinacion"
          , trait = "ger"
          , format = "boolean"
          , when = "30, 40, 50"
          , samples = 1
          , units = "logical"
          , details = NA
  )
) 

fbapp <- tarpuy_traits(fieldbook, last_factor = "bloque", traits)

## Not run:  

library(inti)
library(gsheet)

url_fb <- paste0("https://docs.google.com/spreadsheets/d/"
       , "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1607116093#gid=1607116093")
       
fb <- gsheet2tbl(url_fb) 

url_ds <- paste0("https://docs.google.com/spreadsheets/d/"
       , "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1278145622#gid=1278145622")
       
ds <- gsheet2tbl(url_ds) 

fb <- ds %>% tarpuy_design()

url_trt <- paste0("https://docs.google.com/spreadsheets/d/"
       , "1510fOKj0g4CDEAFkrpFbr-zNMnle_Hou9O_wuf7Vdo4/edit?gid=1665653985#gid=1665653985")
       
traits <- gsheet2tbl(url_trt) 

fbapp <- tarpuy_traits(fb, last_factor = "cols", traits)

dsg <- fbapp[[1]]


## End(Not run)

HTML tables for markdown documents

Description

Export tables with download, pasta and copy buttons

Usage

web_table(
  data,
  caption = NULL,
  digits = 2,
  rnames = FALSE,
  buttons = NULL,
  file_name = "file",
  scrolly = NULL,
  columnwidth = "200px",
  width = "100%"
)

Arguments

data

Dataset.

caption

Title for the table.

digits

Digits number in the table exported.

rnames

Row names.

buttons

Buttons: "excel", "copy" or "none". Default c("excel", "copy")

file_name

Excel file name

scrolly

Windows height to show the table. Default "45vh"

columnwidth

Column width. Default '200px'

width

Width in pixels or percentage (Defaults to automatic sizing)

Value

table in markdown format for html documents

Examples

## Not run: 

library(inti)

met %>%
  web_table(caption = "Web table")


## End(Not run)

Interactive data analysis

Description

Invoke RStudio addin to analyze and graph experimental design data

Usage

yupana(dependencies = FALSE)

Arguments

dependencies

Install package dependencies for run the app

Details

Yupana: data analysis and graphics for experimental designs.

Value

Shiny app

Examples

if(interactive()){

 inti::yupana()

}

Fieldbook analysis report

Description

Function to create a complete report of the fieldbook

Usage

yupana_analysis(
  data,
  last_factor = NULL,
  response,
  model_factors,
  comparison,
  test_comp = "SNK",
  sig_level = 0.05,
  plot_dist = "boxplot",
  plot_diag = FALSE,
  digits = 2
)

Arguments

data

Field book data.

last_factor

The last factor in your fieldbook.

response

Response variable.

model_factors

Model used for the experimental design.

comparison

Factors to compare

test_comp

Comprasison test c("SNK", "TUKEY", "DUNCAN")

sig_level

Significal test (default: p = 0.005)

plot_dist

Plot data distribution (default = "boxplot")

plot_diag

Diagnostic plots for model (default = FALSE).

digits

Digits number in the table exported.

Value

list

Examples

## Not run: 

library(inti)

fb <- potato

rsl <- yupana_analysis(data = fb
                       , last_factor = "bloque"
                       , response = "spad_83"
                       , model_factors = "geno * treat"
                       , comparison = c("geno", "treat")
                       )


## End(Not run)

Graph options to export

Description

Function to export the graph options and model parameters

Usage

yupana_export(
  data,
  type = NA,
  xlab = NA,
  ylab = NA,
  glab = NA,
  ylimits = NA,
  xrotation = c(0, 0.5, 0.5),
  xtext = NA,
  gtext = NA,
  legend = "top",
  sig = NA,
  error = NA,
  color = TRUE,
  opt = NA,
  dimension = c(20, 10, 100)
)

Arguments

data

Result from yupana_analysis or yupana_import.

type

Plot type

xlab

Title for the axis x

ylab

Title for the axis y

glab

Title for the legend

ylimits

limits of the y axis

xrotation

Rotation in x axis c(angle, h, v)

xtext

Text labels in x axis

gtext

Text labels in group

legend

the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)

sig

Column with the significance

error

Show the error bar ("ste" or "std").

color

colored figure (TRUE), otherwise black & white (FALSE)

opt

Add news layer to the plot

dimension

Dimension of graphs

Value

data frame

Examples

## Not run: 

library(inti)
library(gsheet)

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit#gid=172957346")
# browseURL(url)

fb <- gsheet2tbl(url)

smr <- yupana_analysis(data = fb
                       , last_factor = "bloque"
                       , response = "spad_83"
                       , model_factors = "block + geno*treat"
                       , comparison = c("geno", "treat")
                       )
                       
gtab <- yupana_export(smr, type = "line", ylimits = c(0, 100, 2))

#> import

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit#gid=1202800640")
# browseURL(url)

fb <- gsheet2tbl(url)

info <- yupana_import(fb)

etab <- yupana_export(info)

info2 <- yupana_import(etab)

etab2 <- yupana_export(info2)


## End(Not run)

Import information from data summary

Description

Graph summary data

Usage

yupana_import(data)

Arguments

data

Summary information with options

Value

list

Examples

## Not run: 

library(inti)
library(gsheet)

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit#gid=338518609")
# browseURL(url)

fb <- gsheet2tbl(url)

info <- yupana_import(fb)


## End(Not run)

Multivariate Analysis

Description

Multivariate analysis for PCA and HCPC

Usage

yupana_mvr(
  data,
  last_factor = NULL,
  summary_by = NULL,
  groups = NULL,
  variables = NULL
)

Arguments

data

Field book data.

last_factor

The last factor in your fieldbook [string: NULL].

summary_by

Variables for group the analysis.

groups

Groups for color in PCA.

variables

Variables to be use in the analysis [string: NULL].

Details

Compute and plot information for multivariate analysis (PCA, HCPC and correlation).

Value

result and plots

Examples

## Not run: 

library(inti)

fb <- inti::potato 

mv <- yupana_mvr(data = fb
                 , last_factor = "geno"
                 , summary_by = c("geno", "treat")
                 , groups = "treat"
                 , variables = c("all")
                 #, variables = c("wue", "twue")
                 )
                 
mv$plot[1] 

mv$data



## End(Not run)

Fieldbook reshape

Description

Function to reshape fieldbook according a separation character

Usage

yupana_reshape(
  data,
  last_factor,
  sep,
  new_colname,
  from_var = NULL,
  to_var = NULL,
  exc_factors = NULL
)

Arguments

data

Field book raw data.

last_factor

The last factor in your field book.

sep

Character that separates the last value.

new_colname

The new name for the column created.

from_var

The first variable in case you want to exclude several. variables.

to_var

The last variable in case you want to exclude several variables.

exc_factors

Factor to exclude during the reshape.

Details

If you variable name is variable_evaluation_rep. The reshape function will help to create the column rep and the new variable name will be variable_evaluation.

Value

data frame